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Dependent vs Independent Scattering in Fibrous Composites
Containing Parallel Fibers
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The influence of fiber optical properties, size, and volume fraction on dependent scattering in fibrous media
containing parallel fibers is investigated in this study. The extinction efficiency of a dense fibrous medium is
obtained from a rigorous solution of Maxwell's relations by accounting for the near-field multiple scattering
and far-field wave interference between closely spaced parallel fibers. The domains of dependent and independent
scattering are demarcated by conducting a systematic analysis of the extinction efficiency as a function of the
complex index of refraction (m = n — ik), size, and volume fraction of fibers. For the range of parameters
considered, it is shown that the scattering regimes boundary is roughly independent of the index of refraction
for nonabsorbing fibers (k = 0). If the fibers are absorbing (k > 0) the domains of dependent and independent
scattering vary with the refractive index n. Dependent scattering then becomes important at a lower volume
fraction and smaller size parameter as n increases. The scattering regimes for nonabsorbing fibers also shows
close agreement with those for nonabsorbing spheres.

Nomenclature
A = coefficient in the pair-correlation function
a = constant in the pair-correlation function
ajn = dependent scattering wave coefficient,

TE mode
(]ajn = independent scattering wave coefficient,

TE mode
bjn = dependent scattering wave coefficient,

TM mode
(]bjn = independent scattering wave coefficient,

TE mode
c0 = constant, - 1 or 1
d — diameter of fibers
e = unit vector
/,. = volume fraction of fibers, irrln()L()
fv() = critical volume fraction demarcating the

scattering regimes
g(R) = pair-correlation function
Hn = Hankel function of the second kind

/„ = integral order Bessel function
K = complex effective propagation constant of

fibrous medium
k = imaginary part of complex refractive index

m, or index, 1 to N()
k() = propagation constant of medium, 27T/A
L = K cos <f>,
L() = average fiber length
/,, = k(} cos 0,.
m = complex refractive index of fiber, n - ik
N() = total number of fibers
n = real part of complex refractive index, or

index, — oo to °°
n(} = number of fibers per unit volume
Qc = extinction efficiency
R = magnitude of R
R = radial vector
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Rjk = radial distance between fibers j and k
r() = radius of fiber
s = index, — oo to °°
u = scalar potential function, TM mode
V = volume of medium
v = scalar potential function, TE mode
a = size parameters, 2irr()/\
y = polar angle
yjk = angle that the line joining the centers of

fibers j and k makes with the X axis
&jk-> &ns

 = Kronecker delta function
Sj = phase shift of the primary incident wave

at fiber j relative to the origin
0 — azimuthal angle, as shown in Fig. 1
A = wavelength
T = transmittance
r = optical depth
(/) = polar angle, as shown in Fig. 1

Subscripts
d = refers to dependent scattering
e = extinction
/ = refers to the incident wave
/, k = index, refers to the fiber
t = refers to the transmitted wave
0 = refers to independent scattering

Superscripts
I = TM mode
II = TE mode

Introduction

F IBROUS materials are widely utilized for thermal insu-
lation in many commercial and aerospace systems due to

their effectiveness in suppressing radiation. It has been es-
tablished that radiation constitutes a significant portion of the
total heat heat transfer through fibrous insulations, even at
atmospheric conditions.1"3 Therefore, reduction of radiant
transfer is critical to improving the thermal insulation capacity
of fibrous materials. Common fibrous insulations include high-
porosity media, such as building insulations and Space Shuttle
thermal protection tile materials, and high-density media such
as the woven fabric or filament wound insulations. Fibers in
these thermal insulations are usually a few micrometers in
diameter and several millimeters in length. While high-po-
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rosity fibrous materials generally consist of loosely filled, ran-
domly oriented fibers, many high-density fibrous media such
as the woven fabrics and ceramic fibrous composites consist
of highly structured arrays of closely spaced parallel fibers.
The radiative properties of these different types of fibrous
media depend greatly on the concentration and orientation
of fibers in the matrix.

Before proceeding with the development of this article, it
should be pointed out that we are concerned here with infinite
fibers whose radii r() are comparable to wavelength A. The
assumption of infinite fibers is easily satisfied by fibers in
fibrous insulations, which are usually a few microns in di-
ameter and several millimeters long. We refer to a high-po-
rosity medium as one in which the separation between fiber
centers c is much greater than A (i.e., r{) ~ A, c » A), and
a high-density medium if the fiber separation is comparable
to A (i.e., r() ~ A, c ~ A). A brief discussion of the terminology
"dependent scattering" is also given here. In the study of
wave propagation, scattering is generally regarded as either
coherent or incoherent. Technically, coherent scattering re-
fers to the condition where scattered light has the same fre-
quency as the incident light. However, coherent scattering is
often used with a connotation associated with incoherent scat-
tering, such that it refers to the condition in which definite
relationships exist between the phases and amplitudes of the
scattered waves from all the scatterers in the medium, i.e.,
correlated scattering. Coherent scattering generally occurs in
a high-density medium containing closely spaced scatterers.
On the other hand, if the scatterers are far apart as in a high-
porosity medium, there is no definite relationship between
the amplitudes and phases of the scattered waves arising from
the different scatterers. Scattering is incoherent or uncorre-
lated, and the addition rule holds for the radiative properties
of the scatterer medium. The total scattered intensity at a
point in space is simply equal to the sum of those contributed
by all the scatterers. In summary, dependent scattering gen-
erally refers to the case in which scattering is correlated, whereas
uncorrelated scattering is commonly called independent scat-
tering (e.g., Refs. 4 and 5, and the references cited therein).
In this article, for no other reason than to follow tradition,
dependent and independent scattering are used to designate
scattering phenomena pertaining to coherent and incoherent
scattering, respectively.

The analysis of radiative transfer through high-porosity fi-
brous media is relatively straightforward due to the assump-
tion of independent scattering, for which the radiative transfer
equation (RTE) is employed. The radiative properties of fi-
bers are based on the scattering of electromagnetic (EM)
waves by an isolated cylinder.6 Earlier radiative analyses on
fibrous media considered only fibers that are randomly ori-
ented in space.7 8 Radiant transport models for fibrous media
with arbitrary fiber orientations were later developed by ac-
counting for the influence of fiber orientation.9-10 For high-
density fibrous materials, the analysis of radiative properties
is complicated by the dependent scattering effects (i.e., near-
field multiple scattering and far-field wave interference).11

Thus far, theoretical formulations on the radiative properties
of closely spaced fibers are available only for parallel fibers,
such as those in woven fabric insulations and ceramic fibrous
composites. A survey of the radiative modeling to-date of
finite collection and dense medium of closely spaced parallel
fibers is given below.

Based on a rigorous consideration of EM theory, Olaofe12

presented the multiple scattering formalism for a finite col-
lection of closely spaced, parallel infinite cylinders at normal
incidence. By accounting for the depolarization of the scat-
tered waves at oblique incidence, Lee generalized the scat-
tering formalism for arbitrary incidence on homogeneous13

and radially stratified cylinders.14 These finite configuration
formalisms can, in principle, be applied to predict the radia-
tive properties of a high-density fibrous medium by specifying
the location of each of the fibers in the medium. This brute-

force approach is obviously impractical for a dense medium
containing numerous fibers due to the extremely large de-
mand on computer memory and excessive computer execution
time. Therefore, a statistical approach must be applied to
evaluate the radiative propagation characteristics through dense
fibrous media.

Earlier formulations on the effective propagation constant
of dense fibrous media include those by Bose and Mal15 and
Varadan et al.16 for acoustic and elastic waves at normal in-
cidence to homogeneous, infinite parallel cylinders. These
formulations are equally applicable to radiant energy trans-
port because the propagation of acoustic, elastic, and EM
waves is all governed by the Helmholtz equation. By ac-
counting for the decomposition of polarization, the general
formulations for oblique incidence on dense fibrous media
containing bare and coated fibers were developed by Lee.17JK

The formulations reported in Refs. 15-18 are applicable to
fiber sizes comparable to the wavelength and for arbitrary
complex refractive index (with appropriate transformation of
the elastic constants in Refs. 15 and 16 to the dielectric prop-
erties). By considering only the far-field wave interference
effect based on the Rayleigh-Gans (R-G) theory, approximate
formulas for scattering properties were reported by White and
Kumar19 and Kumar and White20 for parallel fibers at normal
incidence. The R-G theory assumes a negligible deviation of
m from that of the surrounding medium, i.e., \m - 1| « 1
for fibers in free space, and that the phase shift of the EM
wave traversing the fibers must be negligible, i.e., 2a\m -
1\ « I.4 These conditions are rarely satisfied for real fibrous
materials in the thermal radiation regime, since the refractive
index of fibers is usually complex and the fiber diameter is
comparable to the wavelength. The contribution of the near-
and far-field effects to the radiative properties of closely spaced
fibers was examined in a recent study,21 which revealed that
neglecting the near-field interactions for fibers of moderate
size parameter would lead to the nonphysical result of a neg-
ative absorption coefficient.

With the advent of woven fabric insulations and ceramic
fibrous composites for high-temperature applications, accu-
rate radiative heat transfer analyses are needed to develop
optimal designs and predict the performance. Therefore, it is
necessary to understand the effect of fiber size and optical
properties on the radiative properties of a fibrous medium as
the fiber volume fraction increases. The objective of this study
is to examine the conditions for which dependent scattering
would become important for fibrous media containing parallel
fibers. This is achieved by a systematic analysis of the radiative
propagation characteristics in a fibrous medium. This article
will begin with a discussion of the theoretical basis.

TE

Fig. 1 Plane EM wave at oblique incidence on a dense medium of
fibers.
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Theory
It is well established that the radiative properties of a high-

porosity, i.e., independent, scattering medium are equal to
the sum of those for the isolated scatterers.4 In a high-density
medium (r(), c ~ A), this simple addition rule is no longer
valid due to dependent scattering in the near and far fields.
The formal solution including the dependent scattering effects
in a dense fibrous medium must be obtained by solving Max-
well's equations. Detailed formulations of radiative propa-
gation through a medium of closely spaced parallel fibers at
oblique incidence have been presented by Lee.13 14 For con-
tinuity, the formulations are briefly summarized here.

For a plane EM wave at oblique incidence on a collection
of parallel fibers as shown in Fig. 1, the total scalar wave
potentials at a point P in space with respect to fiber / are
equal to the sum of the contributions of the scattered waves
from all fibers. These potential functions correspond to the
z component of the magnetic and electric hertz vectors, re-
spectively, which satisfy the scalar Helmholtz equation. The
total scalar potentials including depolarization at oblique in-
cidence are summarized as13

where ei[ = exp(-ik0ei-Rj)] is the phase shift of the incident
wave at fiber j

(7)

and the wave coefficients with the upper-left superscript 0
refer to those for scattering by an isolated fiber. The corre-
sponding expressions for a TE mode incident wave are ob-
tained by making the following substitutions: b]n — > b™n and
an -» fl}i in Eq. (5), a}n -» a?n and b}n -» b1^ in Eq. (6), as
well as "bn and (]a]n -> °alfn on the right side of Eqs.
(5) and (6), respectively. By specifying the location of each
of the fibers, Eqs. (5) and (6) can be solved for the wave
coefficients that can then be used to obtain the total extinction
and scattering cross sections of the finite collection of fibers.

As NO and V become very large, while n0( = NQ/V) remains
finite, the average wave traverses the medium with K, which
is different from k().22 By utilizing ensemble averages, the
relation governing both the TM and TE mode propagation
constants at oblique incidence is given by the following de-
terminant for both bare and coated fibers17-18:

u,{Rp) = u?( (-1)"

bknHn(lJtkp)

for the transverse magnetic (TM) mode incident wave, and

- c,,

ak,,H,,(lHRkp)

n()
()a]tFsn

= 0 (8)

(1) which is a transcendental equation containing the unknowns
K, </>„ and 0,. The parameters </>, and 0, are complex angles
specifying the propagating direction of the transmitted wave
in the medium. Because the propagation constants of a dense
discrete random medium are analogous to the optical con-
stants of a homogeneous medium, Eq. (8) is often called the
dispersion relation for the composite medium.16 However, it
must not be confused with the dispersion relation based on
semiconductor theory for crystalline solids. In Eq. (8) the

^/ quantity n(}Fsn is given by17*18

for the transverse electric (TE) mode incident wave. In the
above expressions, N(} is the total number of fibers, Rp is the
radial vector to point P, /() = /c() cos </>,, k(} is the propagation
constant of the medium containing the fibers, Hn is the Hankel
function of the second kind, and bkn and akn are unknown
coefficients. The superscripts I and II associated with w, v,
bkn, and akn, which denote the TM and TE mode, respectively,
have been omitted for brevity. The potential functions of the
incident wave are given by

(3)

for an incident TM wave, and

v;>(/g = exP(-/*()<v/g, <(/g = o, Co = i (4)
for an incident TE wave, where ef is the unit vector in the
direction of the incident wave. At oblique incidence both
Uj(Rp) and vy-(U/7) exist due to the decomposition of polari-
zation. By invoking the continuity of the tangential compo-
nents of the electric and magnetic field vectors across the
surface of each fiber, the following set of equations is obtained
for the unknown wave coefficients of an incident TM wave:

(5)

(6)

P/or0/J-w(2Lr0)//;./l(2/0r0)

yj_II(2Lr0r)//J_w(2/0rc/)fe(0 - l}t dt (9)

where /r( = 77T(
2/z()L()) is the fiber volume fraction, L =

Kcos </>„ g(t) is the fiber radial distribution function, t( = R/2r(})
is the nondimensional radial distance, and the superscript '
denotes differentiation with respect to the argument. The
complex angles are related to 4>, and 0,., describing the incident
direction by Snell's laws:

k() cos (/>, sin 0,. = K cos </>, sin 9, (10)

k(} sin (/>, = K sin <f>t (11)

Equations (8-11) provide a complete system that can be solved
for K, </>,, and 0,. It can be shown from Eqs. (10) and (11)
that K is independent of 0r

Evaluation of the dispersion relation requires the pair-cor-
relation function g(R). For closely spaced parallel fibers, the
g(R) based on the Monte Carlo analysis of an isothermal-
isobaric ensemble of hard disks23 or an empirical exponential
form15 can be used. These functions can be approximated by

g(R) = 1 + A exp{-fl[fl/(2r()y]}, R > 2r(l (12)

The values A = 900, a = 4.85, and p = 1, based on an
approximate fit of the numerical values of the correlation
function presented in Ref. 23, are used in the present analysis.
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The extinction efficiency of the medium, which accounts for
the dependent scattering effects is related to K by22

TE wave. The cross-mode coefficients (}a}, and l}bl
tf vanish, and

Eq. (8) decomposes to

(13)

where Im refers to the imaginary part. The values of Qed and
K for unpolarized radiation are simply equal to the average
of those for the TM and TE modes.

Demarcation Criterion
Demarcation of the scattering regimes requires the appli-

cation of a specific criterion that generally depends on the
quantity of interest, such as transmission, reflection, or ra-
diative heat transfer. While the scattering regimes for trans-
mission analyses can be obtained by a consideration of the
extinction coefficient only, radiative heat transfer presents a
much more complicated problem, because it varies strongly
with the temperature and emittance of the boundaries. There-
fore, the scattering regimes can only be developed by con-
sidering all combinations of boundary temperature and emit-
tance, in conjunction with the spectral optical properties of
the fibers, as well as the fiber size, volume fraction, and
thickness of the medium.

Although a thorough analysis exhausting the range of all
variables is undoubtedly most rigorous, the problem also be-
comes practically intractable due to the numerous combina-
tions of the various parameters. A much less ambitious, albeit
only approximate, approach is based on the consideration of
the extinction efficiency. Because the extinction efficiency
includes both absorption and scattering, it governs the atten-
uation of radiation, as well as the radiative transfer within
the context of the diffusion approximation for an optically
thick medium, which is usually the case for high-density fi-
brous media.

Consider the attenuation by a dense fibrous medium. The
transmittance accounting for dependent scattering can be ex-
pressed as

T = exp(-r(k/) = Qxp(-r()QJQe()) (14)

where r() is the optical depth based on the independent scat-
tering extinction efficiency Qe(). If dependent scattering is ig-
nored in the analysis, the transmittance based on independent
scattering would be calculated as

( ) = exp(-r()) (15)

The ratio of the transmittance based on dependent and in-
dependent scattering is a function of QLJQe() — 1, which
measures the deviation of the effective extinction efficiency
from the independent scattering value. Since the optical depth
of a dense medium is usually very large due to the high fiber
volume fraction, it is easy to see that even a 5% deviation of
Qeil from Qc() would result in a rather substantial error if
dependent scattering is neglected. Therefore, the deviation
°f QcJQe(} from unity is being used in the present study as
the criterion to demarcate the scattering regimes.

Solution of Dispersion Relation
The extinction efficiency Qctl of a fibrous medium is strongly

influenced by the complex refractive index, size, and volume
fraction of fibers, as well as the angle of incidence. Since EM
waves propagating normal to the fiber axes traverse the short-
est distance between successive scattering than at oblique in-
cidence, near-field multiple scattering is more pronounced at
normal incidence. Therefore, the subsequent analysis of scat-
tering regimes is based on normal incidence for a conservative
analysis.

At normal incidence the scattered waves do not become
depolarized so that a TM/TE incident wave scatters as a TM/

nl}°bl
HFsn\ = 0 (16)

(17)

for the TM and TE modes, respectively. The roots of the
complex analytic functions represented by these determinants
are solved by utilizing the IMSL double precision subroutine
DZANLY.24

Equations (16) and (17) are (2N + 1) x (2N + 1) deter-
minants containing the unknown K, where N is the number
of truncation terms. To minimize truncation errors, all cal-
culations are performed in double precision. A solution K(} is
accepted only if both \f()(K())\ and \ft}(Kl})/(K - Kl})\ are less
than l.E-5, where f()(K) is the complex analytic function.
Values based on the Rayleigh limit formula17 usually provide
good initial guesses to start the iteration.

Analysis of Scattering Regimes
Extensive numerical analyses are performed to identify gen-

eral trends for demarcating the scattering regimes. Instead of
using the refractive index of a specific material, the real and
imaginary parts of m are varied independently. The values of
n and k used in the analyses are n = 1.05, 1.546, 2.0, 3.0,
4.0, and k = 0.0, 0.5, 1.0, which cover most materials of
interest to thermal insulation applications. The size param-
eters are a = 0.01, 0.05, 0.1, 0.5,1, 2, and 17 volume fractions
between 0.001-0.5 are used. Typical execution times to solve
for the effective propagation constants on the 486/33 MHz PC
for each combination of n and k for 17 values of/,, are 20 min
for a = 0.01, 1 h for a = 0.05 and 0.1, 3 h for a = 0.5, and
in excess of 8 h for a = 1.0. The increase in execution time
with a is due to the larger number of terms that must be
retained in the governing equations. Several values of K be-
yond a = 1.0 are also obtained in order to assist the extrap-
olation to larger size parameters.

Typical variations of the efficiency ratio (QCJQC()) with fiber
volume fraction are shown in Figs. 2 and 3 for a = 0.05 and
0.5, respectively, which reveal that QC(i/Qc() varies consider-
ably with fiber optical properties. At very low volume frac-
tions, QJQeu is nearly unity, indicating that independent scat-
tering prevails. It then deviates from unity as the volume
fraction increases due to the gradual importance of the de-
pendent scattering effects. In order to demarcate the scatter-
ing regimes, the criterion of a 5% deviation of the efficiency
ratio from unity is used. The volume fraction at which this
occurs is designated as the critical volume fraction /,.() beyond
which scattering becomes dependent. Based on this approach,
maps of the scattering regimes are shown in Figs. 4 and 5 for

§•
I

>.ia&
3

Volume fraction
Fig. 2 Variation of the efficiency ratio with volume fraction for
a = 0.05.
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Fig. 3 Variation of the efficiency ratio with volume fraction for
a = 0.5.

.1 1
Size parameter

Fig. 4 Scattering regimes for real refractive index.

Size parameter

Fig. 5 Scattering regimes for complex refractive index.

nonabsorbing and absorbing fibers, respectively. A common
feature of these results is that /v() is relatively constant for a
<0.1.

Figure 4 shows the critical volume fraction (/v()) as a function
of a for nonabsorbing fibers for a > 0.1. Also shown are the
curve-fits for the data of each refractive index, in which the
region below the curves is the independent scattering regime.
It is apparent from these data that an approximate boundary
of the scattering regimes can be drawn for nonabsorbing fi-
bers. In the case of absorbing fibers as shown in Fig. 5, the
data for each complex index of refraction can be fitted sim-
ilarly by the exponential form. These results reveal that ab-
sorption causes a shift of the scattering regimes, so that /,<,
decreases as the real part of the complex refractive index

increases. The size parameter beyond which dependent scat-
tering is important also becomes smaller.

Approximate Model
For nonabsorbing fibers (k = 0), as shown in Fig. 4, the

data set for each index of refraction can be fitted by expres-
sions of the form/v - a() * 10 ** (b0a), where a{} is approx-
imately equal to the critical volume fraction /v(). For m =
1.05, 1.546, 2, and 3, the constants are given by a() = 8.04E-
03, 6.57E-03, 5.69E-03, and 8.25E-03; and b0 = 0.417, 0.749,
1.22, and 0.716, respectively. It is apparent from Fig. 4 that
all of the data can be represented approximately by a single
expression. Based on the curve-fits for the various m, we
obtain/,. - /,() * 10 ** (0.732a) as an approximate fit for
nonabsorbing fibers.

For absorbing fibers, i.e., k > 0, similar curve-fits can be
obtained for the data. The trend of the curves is, however,
quite distinct for each refractive index, as shown in Fig. 5.
For a given refractive index n, only a small difference exists
between the data for different absorption index A:. As an
approximation, therefore, a single curve-fit can be used for
the data for the same n. The constants in the exponential
analytic expressions are then given by/v0 = 5.98E-02, 1.86E-
02, and 7.98; and b0 = 4.48E-2, 0.418, and 1.57 for m =
2. - to, 3. - to, 4. - to (k = 0.5, 1.0), respectively. To
interpolate between 4 > n > 2, we assume that the same
variation of volume fraction with size parameter holds in this
range. A third-order polynomial fit of b() with respect to n
yields &„ - 1.633 - 1.573« + 0.389rc2. Therefore, the expres-
sion for demarcating the scattering regimes for 4 > n > 2 and
1 > k > 0.5 is given by/,, - fv0 * 10 ** [bl}(n)a].

Based on the above results, a simple model for demarcating
the scattering regimes can be derived. The model is based on
two aspects. First, the critical volume fraction/,() is relatively
constant for a < 0.1, which allows/v() to be evaluated from
the Rayleigh limit formulas. Second, the variation of /I() with
a is given by the curve-fits for a > 0.1. This model is sum-
marized below.

Region of a < 0.1
The numerical results indicate that fvQ is relatively constant

for size parameters less than 0.1. Therefore, /v() can be de-
termined from the analysis of Rayleigh limit fibers. In this
limit the dispersion relations can be greatly simplified in the
numerical evaluation of the effective propagation constant
and extinction efficiency. In particular, only the leading terms
in Eqs. (16) and (17) need to be retained, thus greatly ex-
pediting numerical computation. By calculating Qed as a func-
tion of/, in the Rayleigh limit, the extinction ratio similar to
those shown in Figs. 2 and 3 is generated. A 5% deviation
of the extinction ratio from unity is then applied to yield

/v - /vO (18)

as the boundary demarcating the scattering regimes for a <
0.1.

Region a > 0.1
The curve-fits on the data are applied in this region. For

nonabsorbing fibers for 4 > n > 1.05, the demarcation is
identified by

/• = /vo * 10 ** (0.732a) (19)

where /,.„ is the critical volume fraction given by Eq. (18).
For absorbing fibers, the demarcation is given by

/, = /,() * 10 ** [(1.633 - 1.573* + 0.389rc2)a] (20)

for 4 > n > 2 and 1 > k > 0.5.
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Fig. 6 Comparison of the scattering regimes for fibers and spheres.

A comparison is made between the present model for non-
absorbing fibers with the scattering regimes map for spheres,
as shown in Fig. 6. The scattering regimes map for spheres
as reported in Ref. 25 depicts a collection of test data for
nonabsorbing spheres and a curve demarcating the domains
of dependent and independent scattering. To obtain the cor-
responding map for fibrous media, the critical volume fraction
fv(} is first calculated as described above for a < 0.1 and m
= 1.19, which is the refractive index for the data on spheres.
This yields /r() = 0.0052, so that the demarcation curve is
given by/,, = 0.0052 * 10 ** (0.732a). As shown in Fig. 6,
the demarcation curve for fibrous media agrees well with the
data for spheres. The good agreement is quite surprising in
view of the considerable differences between the scattering
behavior of fibers and spheres. Specifically, the scattered waves
from spheres propagate as spherical waves that span the entire
47r-sr solid angle. The scattered waves from infinite fibers are
cylindrical waves that are confined to propagate along the
surface of a cone with an apex angle equal to 2n - <£,-, where
<j>i is the angle of incidence. At normal incidence the cone
opens up into a plane normal to the fiber axis.

Summary
Radiant energy transport in fibrous composites is strongly

influenced by the size, optical properties, and fv of fibers.
Independent scattering generally prevails if fv « 1, so that
fibers scatter as isolated scatterers. As the fiber volume frac-
tion increases, near-field multiple scattering and far-field wave
interference gradually become dominant, and scattering would
become correlated. Therefore, the adequacy of the inde-
pendent scattering assumption must be assessed in the analysis
of radiative transfer through a fibrous medium.

The present analysis of scattering regimes is based on the-
oretical formalisms that account for dependent scattering. The
extinction efficiency Qed at normal incidence for a composite
containing parallel fibers is obtained as a function of fiber
volume fraction for a range of size parameter and complex
refractive index. The deviation of Qed from the independent
efficiency Qe{} as function of volume fraction reveals the grad-
ual dominance of dependent scattering. A 5% deviation of
QeJQeu from unity is applied as the criterion for demarcating
the scattering regimes.

The present results indicate that the scattering regimes are
strongly affected by the complex index of refraction. For non-
absorbing fibers, a single demarcation curve is applicable for
a refractive index between 1.05 and 4. For absorbing fibers
(!>/:>0.5),a family of curves is obtained for each refractive
index (n = 2, 3, 4). These optical properties cover the range
of many materials for thermal insulation applications. Finally,

good agreement is observed between the present model for
nonabsorbing fibers and the data for nonabsorbing spheres,
despite the different scattering behavior of fibers and spheres.
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